Skip to contents

Venire Dataset

The venire dataset contains all of the potential jurors who showed up at the courthouse on the day of their jury summons.

All Individuals

venire |> 
  count() |> 
  rename(Individuals = "n")
#> # A tibble: 1 × 1
#>   Individuals
#>         <int>
#> 1        3300
#> # A tibble: 6 × 2
#>   Race            Jurors
#>   <fct>            <int>
#> 1 Black              605
#> 2 Hispanic           639
#> 3 White             1648
#> 4 Asian              200
#> 5 Other              195
#> 6 Native American     13
#> # A tibble: 3 × 2
#>   Gender Jurors
#>   <fct>   <int>
#> 1 Female   1739
#> 2 Male     1510
#> 3 Other      51
#> # A tibble: 4 × 2
#>   `Age Group` Jurors
#>   <fct>        <int>
#> 1 18 - 30        580
#> 2 31 - 44        911
#> 3 45 - 54        742
#> 4 55 +          1067

Disqualified

Before proceeding to juror questioning, the Court determines whether any potential jurors should be disqualified.

#> # A tibble: 5 × 2
#>   Race     Jurors
#>   <fct>     <int>
#> 1 Black         8
#> 2 Hispanic     96
#> 3 White        14
#> 4 Asian        43
#> 5 Other        11
#> # A tibble: 3 × 2
#>   Gender Jurors
#>   <fct>   <int>
#> 1 Female     88
#> 2 Male       74
#> 3 Other      10
#> # A tibble: 4 × 2
#>   `Age Group` Jurors
#>   <fct>        <int>
#> 1 18 - 30          8
#> 2 31 - 44         40
#> 3 45 - 54         55
#> 4 55 +            69

bullpen Dataset

Before beginning the questioning of potential jurors, the Court ensures that everyone is eligible to serve and should not be disqualified. Once those individuals have been identified and dismissed, the remaining potential jurors can be found in the bullpen dataset.

For race, due to the small number who identified as “Native American”, those were combined with “Other” for the remaining analyses.

A Note About Manually Tallying Numbers

It is possible that numbers may not add up to their parent totals. For example, a potential juror might be peremptory challenged by both the State and the Defense leading the individual counts to be greater than the single total of all challenges.

Caused

#> # A tibble: 5 × 2
#>   Race     Jurors
#>   <fct>     <int>
#> 1 Black       316
#> 2 Hispanic    302
#> 3 White       675
#> 4 Asian        82
#> 5 Other        93
#> # A tibble: 3 × 2
#>   Gender Jurors
#>   <fct>   <int>
#> 1 Female    754
#> 2 Male      688
#> 3 Other      26
#> # A tibble: 4 × 2
#>   Age     Jurors
#>   <fct>    <int>
#> 1 18 - 30    295
#> 2 31 - 44    445
#> 3 45 - 54    277
#> 4 55 +       451
#> # A tibble: 3 × 2
#>   `I-30` Jurors
#>   <fct>   <int>
#> 1 South     488
#> 2 North     928
#> 3 Split      52

Jurors Dismissed Through Peremptory Challenges by State

#> # A tibble: 5 × 2
#>   Race     Jurors
#>   <fct>     <int>
#> 1 Black       107
#> 2 Hispanic     76
#> 3 White       221
#> 4 Asian        24
#> 5 Other        33
#> # A tibble: 3 × 2
#>   Gender Jurors
#>   <fct>   <int>
#> 1 Female    248
#> 2 Male      209
#> 3 Other       4
#> # A tibble: 4 × 2
#>   Age     Jurors
#>   <fct>    <int>
#> 1 18 - 30     98
#> 2 31 - 44    128
#> 3 45 - 54     92
#> 4 55 +       143
#> # A tibble: 3 × 2
#>   `I-30` Jurors
#>   <fct>   <int>
#> 1 South     147
#> 2 North     304
#> 3 Split      10

Jurors Dismissed Through Peremptory Challenges by Defense

#> # A tibble: 5 × 2
#>   Race     Jurors
#>   <fct>     <int>
#> 1 Black        46
#> 2 Hispanic     46
#> 3 White       356
#> 4 Asian        16
#> 5 Other        29
#> # A tibble: 3 × 2
#>   Gender Jurors
#>   <fct>   <int>
#> 1 Female    280
#> 2 Male      210
#> 3 Other       3
#> # A tibble: 4 × 2
#>   Age     Jurors
#>   <fct>    <int>
#> 1 18 - 30     60
#> 2 31 - 44    110
#> 3 45 - 54    145
#> 4 55 +       178
#> # A tibble: 3 × 2
#>   `I-30` Jurors
#>   <fct>   <int>
#> 1 South     123
#> 2 North     353
#> 3 Split      17

Averages per Trial

#> # A tibble: 5 × 2
#>   Race     `Avg. # Jurors`
#>   <fct>              <dbl>
#> 1 Black               2.91
#> 2 Hispanic            2.95
#> 3 White               8.48
#> 4 Asian               1.38
#> 5 Other               1.91
#> # A tibble: 3 × 2
#>   Gender `Avg. # Jurors`
#>   <fct>            <dbl>
#> 1 Female            8.08
#> 2 Male              7.02
#> 3 Other             1.14
#> # A tibble: 4 × 2
#>   `Age Group` `Avg. # Jurors`
#>   <fct>                 <dbl>
#> 1 18 - 30                2.55
#> 2 31 - 44                4.22
#> 3 45 - 54                4.06
#> 4 55 +                   4.83
#> # A tibble: 4 × 2
#>   `I-30` `Avg. # Jurors`
#>   <fct>            <dbl>
#> 1 South             4.48
#> 2 North            10.3 
#> 3 Split             1.28
#> 4 NA                1

The missing data point comes from a data entry error with the zip code for one juror.

The specific reason for the highest occurring causes for each column.